Imagery Option Comparisons Aerial Services, Inc.

All flight altitudes and estimates following were derived from Leica ADS specifications

1 Meter Acquisition

- 31,647' AGL flights
 - Limited to turboprop or jets
 - Aircraft must be equipped with RVSM (very expensive)
- Less line miles

75cm Acquisition

- 25,320' AGL flights
 - At the upper threshold of piston aircraft
 - Only suitable for low/flat terrain if using piston or small turboprop aircraft.

65cm Acquisition

- 22,150' AGL flights
 - Most aerial photography aircraft can fly here
- Altitude more suitable for piston aircraft (in most areas).

1/2 Meter Acquisition

- 15,825' AGL flights
- Most suitable for piston aircraft
- Below Class A (in most areas)
- Can fly inside a MOA since flights can be conducted VFR (in most areas).
- More aircraft available to fly at this lower altitude.
- More flight and production time = higher cost

Flight Comparisons (State of Iowa with Leica ADS)

Flight Height (cm GSD)	Flight Height (feet AGL)	Number of Lines	Number of Line Miles	~Time to fly @ 260 kts (hours)
100	31,647	189	11,456	63
75	25,320	255	15,285	85
65	22,150	297	17,646	98
50	15,825	390	22,885	127

Time Comparisons

Flight

0 1 Meter vs. 50 cm = ~ 2 x the line miles/flight time

Processing

- \circ 1 Meter vs. 50 cm = \sim 1-3 x the computer time
- 1 Meter vs. 50 cm = ~ 1-2 x human interaction time

Data Storage

 \circ 1 Meter vs. 50 cm = \sim 4 x the total file sizes

File Size Comparison

- NAIP Iowa 2010 1 meter 4band
 - File size = 10.3 GB

- NAIP Iowa 2010 Hi-Res .5 meter 6band
 - o File size = 62.1 GB

File Size Comparison Continued One DOQQ

- o ½ meter
 - o File size: 678 MB
- o 1 meter
 - o File size: 169 MB

Rectified flight line

- NAIP lowa 2010 1 meter 4band
 - o File size = 10.3 GB
- NAIP Iowa 2010 Hi-Res .5 meter 6band
 - File size = 62.1 GB

Doesn't take into account: overviews, seamlines, etc.

Samples-MN

1 meter pixel @ 1 meter

.5 meter @ 65 cm

Hi-Res output

Samples-MN

1 meter @ 1 meter

1 meter @ 65 cm

Hi-Res output

Samples-lowa

1 meter pixel @ 65cm

.5 meter pixel @ 65cm

Hi-Res output

Advantages

- 50cm GSD collection is at 15,825' AGL
 - This is below the Class A airspace and also would allow flights within MOA's.
- Using a Leica ADS and Hi-Res mode to capture would allow a 30cm GSD product to be produced.
- Better product for users
- More enticing to potential partners for higher resolution.

Disadvantages

- Lower flight height = more flight line miles, which means longer acquisition.
- Longer processing time
- Data storage requirements
 - Contractors
 - Vendor/User
- Delivery media
- Existing DOQQ boundary limits if used with 50cm collection, makes for difficult production. (Smaller DOQQ boundaries would improve this?)